WISSENSDARSTELLUNG BEI LEIBNIZ

Peter Jaenecke
(pjaenecke@gmx.de)

EINLEITUNG .. 2

I. ELEMENTARE PRINZIPIEN ZUR DARSTELLUNG VON WISSEN..... 3
 I.1. SEMIOTIK VERSUS DARSTELLUNGSTHEORIE ... 3
 I.2. DARSTELLUNGSPRINZIPIEN ... 5
 Strukturbildung ... 5
 Minimale Sprachmächtigkeit .. 6
 Darstellungstreue .. 6
 Analyse .. 7
 Synthese .. 8
 Kodierung ... 8
 Objektdarstellung .. 9
 Darstellung von Gesetzmäßigkeiten .. 10
 I.3. WIE KOMMT WISSEN IN EIN ZEICHENSYSTEM? 10

II. WISSENSDARSTELLUNG MIT FORMALEN SPRACHEN 12
 II.1. FORMALE SPRACHEN: GRUNDBEGRIFFE .. 12
 II.2. CHARACTERISTICA UNIVERSALIS ALS FRÜHFORM EINER FORMALEN SPRACHEN 14
 Analyse, Synthese, Kodierung .. 14
 Lex expressionum ... 15

III. LEIBNIZ-PROGRAMM ... 16
 Wissen kompakt und eindeutig erfassen .. 17
 Sicherheit durch Zeichenoperationen ... 17
 Sprache als (Denk)werkzeug (organon mentis) 17
 Einwände gegen das LEIBNIZ-Programm ... 18

IV. FOLGERUNGEN AUS DER WISSENSDARSTELLUNG 20
 Verhältnis von natürlichen und künstlichen Sprachen 21
 „Formales“ Operieren mit Symbolen ... 22
 Trennung von Form und Inhalt ... 23
 Verletzung der Darstellungstreue aufgrund traditioneller Formalismen 24

RESÜMEE .. 25

LITERATUR .. 27

Einleitung

Die Aktualität eines älteren Authors beruht selten auf seinen konkreten Ergebnissen; zu groß ist der zeitliche Abstand, zu schnell die Entwicklung, als daß sie noch Geltung beanspruchen könnten. Für grundlegende Ideen gilt dies nicht: ihre ersten Verwirklichungsversuche können zwar ebenfalls überholt sein, sie selbst aber erweisen sich oft als überraschend aktuell. Dies trifft, wie im folgenden gezeigt werden soll, auf die von LEIBNIZ im Umkreis seiner ars characteristica geäußerten Gedanken zur Wissensdarstellung im hohen Maße zu.

I. Elementare Prinzipien zur Darstellung von Wissen

I.1. Semiotik versus Darstellungstheorie

Das bisher Gesagte bezieht sich auf Inhalte allgemein, gilt also für wissenschaftliche und künstlerische Gestaltung gleichermaßen. Wissensdarstellung ist enger: sie beschränkt sich auf die Darstellung von Inhalten, verstanden als Produkte wissen-

2 So z.B. ECO, Semiotik.

LEIBNIZ hat die Idee der Wissensdarstellung folgendermaßen formuliert:

»Wenn es möglich wäre, Symbole oder Zeichen zu finden, die sich dazu eignen, alle unsere Gedanken ebenso gradlinig und stringent auszudrücken wie die Arithmetik die Zahlen oder wie die Geometrie die Figuren darstellt, dann könnten alle Dinge, soweit sie dem Schlußfolgern unterworfen sind, in der gleichen Weise behandelt werden wie es in der Arithmetik und Geometrie getan wird.«

Zwischen seiner Charakterisierung und der folgenden aus der Künstlichen Intelligenz stammenden Definition besteht inhaltlich kein grundsätzlicher Unterschied:

Wissensdarstellung ist die zeichensprachliche Repräsentation von Objekten, Fakten und Regeln in operationaler Form für einen Handlungsträger mit zeichenverarbeitender Fähigkeit.

„Wissensdarstellung“ wird im folgenden als Bestandteil einer allgemeinen Sprachtheorie verstanden; sie ist nicht mit dem gleichnamigen KI-Fach zu verwechseln, das als angewandte Wissensdarstellung gelten kann. Die Wissensdarstellung betrifft somit

- die Konstruktion, oder, sofern bereits vorhanden, das Auffinden eines für das darzustellende Wissen geeigneten Sprachmittels sowie
- die Darstellung des Wissens selbst.

Beide Vorgänge müssen nicht notwendig als zeitlich nacheinander ablaufend gedacht werden; erfahrungsgemäß ergänzen sie sich wechselseitig.

3 C 115 = X 90.
4 LAUBSCH, Techniken der Wissensdarstellung, p. 48.
1.2. Darstellungsprinzipien

Natürliche Sprachen erscheinen stets als bedeutungsvolle Zeichensysteme, so daß für ihren Gebrauch die Frage, wie sie zu ihren Inhalten gekommen sind, ohne Belang zu sein scheint. Bei künstlichen Sprachen gibt es diese günstige Ausgangsposition nicht; hier drängen sich die Fragen auf:

- Wie ist es überhaupt möglich, Inhalt in einen künstlichen Formalismus zu bringen?\(^6\)
- Wie muß man dabei vorgehen?

Die Darstellungsprinzipien insgesamt beantworten die zweite Frage. Die ersten drei Prinzipien behandeln allgemeine Darstellungsaspekte; die Prinzipien 4 und 5 beziehen sich auf die Aufbereitung des darzustellenden Materials und die Prinzipien 6 – 8 auf die Darstellung selbst. Die Antwort auf die erste Frage ergibt sich als Schlußfolgerung aus den Prinzipien.

Strukturbildung

Ein (Zeichen)systen ist leer, wenn seine Elemente bezüglich der Darstellungseigenschaft alle gleichwertig sind und bezüglich anderer Eigenschaften verschieden. Bei einem weißen Blatt Papier sind die „Elemente“ die Bildpunkte; sie haben alle eine unterschiedliche Lage; die Darstellungseigenschaft ist die Farbe; hinsichtlich dieser unterscheiden sie sich nicht. Ein (Zeichen)systen enthält Inhalt, wenn sich seine Elemente auch bezüglich der Darstellungseigenschaft unterscheiden, wenn also z.B. ein Blatt Papier Tintenspuren aufweist. Unterschiede lassen sich herstellen, indem man in einer sogenannten Trägermenge bestimmte Elemente anders behandelt als die übrigen:

P₁ Inhalt in einem System darstellen heißt, in einer Trägermenge eine Teilmenge ausgrenzen. Die erste Entscheidung, die bei der Wissenschaft darstellung getroffen werden muß, ist die Wahl einer geeigneten Trägermenge, auch Darstellungsraum genannt.

So spannt die kartesische Ebene einen inhaltlosen zweidimensionalen Raum auf; Inhalt in ihm darstellen bedeutet, eine bestimmte Menge von Punkten dieser Ebene auszeichnen, z.B. als Kurve. Bei natürlichen Sprachen ist die Menge aller Wortkombinationen die Trägermenge; sie ist inhaltss leer, denn wenn jedes Wort neben jedem anderen stehen darf, kann kein Inhalt erfaßt werden. Darstellungseigenschaft ist daher die Nachbarschaftsbeziehung; sie wird durch die Grammatik festgelegt. Ein Beispiel ganz anderer Art ist der Lernvorgang, in dessen Verlauf der Lernende ebenfalls eine Struktur ausbilden muß. Erfahrungen mit Lernalgorithmen haben gezeigt, daß der Lernerfolg nur dann befriedigend ausfällt, wenn

\(^6\) Die Problematik, die sich hinter dieser Frage verbirgt, wird kaum thematisiert; Ausnahme: SCHNELL, From Leibniz to Artificial Intelligence, p. 64.
dem lernenden System nicht nur Beispiele, sondern auch Gegenbeispiele präsentiert werden: Die Beispiele entsprechen den Elementen aus der Teilmenge; um sie zur Wirkung zu bringen, sind andere, nicht zur Teilmenge, sondern zur Trägermenge gehörende Gegenbeispiele erforderlich.

Minimale Sprachmächtigkeit

Experimentelle Ergebnisse beziehen sich auf Einzelfälle; sie liefern Faktenwissen. Verallgemeinert führen sie zu allgemeinen Aussagen oder Gesetzeswissen, das wiederum, soll es angewandt werden, Faktenwissen voraussetzt. Sowohl für Gesetzes- als auch für Faktenwissen muß es daher sprachliche Ausdrucksmöglichkeiten geben. Beide Bereiche gehören jedoch zwei verschiedenen Abstraktionsebenen an: sie erfordern somit auch je eigene Sprachmittel:

P₂ Der Darstellungsformalismus muß mindestens zwei verschiedene, miteinander verbundene Sprachebenen zu erfassen gestatten.

Bei einer Wertetabelle z.B. sind die angegebenen Werte die Individuen. P₂ fordert, daß auch die Teilmenge selbst, aus der die Werte stammen, darstellbar sein muß; dies kann durch eine Regressionsfunktion geschehen. Funktionen erfordern aber andere Sprachmittel als tabellarische Zusammenstellungen. Umgekehrt, beim Anwenden einer durch Buchstaben dargestellten Formel auf einen konkreten Fall, ist es notwendig, wieder auf die Zahlenebene zurückzugehen.

Darstellungstreue

Es gibt stets mehrere, sich hinsichtlich ihrer Qualität unterscheidende Möglichkeiten, einen Inhalt sprachlich zu erfassen. Wissen soll so gut wie möglich dargestellt werden; darunter ist folgendes zu verstehen:

P₃ Die Wissensdarstellung muß darstellungstreue erfolgen. Ein Formalismus erfaßt das Wissen eines Objektbereiches darstellungstreue, wenn er es vollständig repräsentiert und wenn mit ihm keine Inhalte ausgedrückt werden können, die nicht zum darzustellenden Wissen gehören.

Darstellungstreue ist das Kriterium für die Exaktheit einer Darstellung. P₃ beruht auf der Einsicht, daß nicht jeder Inhalt durch jede Sprache gleich gut ausgedrückt werden kann. Daraus leitet sich die Verpflichtung ab, den Formalismus an den darzustellenden Inhalt anzupassen. Darstellungstreue darf nicht mit Wahrheit verwechselt werden: erstere bezieht sich auf die Korrektheit der Darstellung, letztere auf die Korrektheit des dargestellten Inhalts. Wenn ein Inhalt darstellungtreu erfaßt wurde, ist das Ziel der Wissensdarstellung erreicht; welchen Wahrheitsgehalt der Inhalt hat, darüber kann in der Wissensdarstellung nicht entschieden werden: auch Falsches läßt sich exakt darstellen. Darstellungstreue zu
erreichen, ist nicht nur Sache der Wissenschaftler; sie ist auch jedem um den optimalen Ausdruck ringenden Künstler vertraut.

Um der Forderung nach Darstellungstreue nachkommen zu können, braucht man bei den Sprachmitteln freie Hand; deshalb ist es in der Regel notwendig, auf künstliche Sprachen auszuweichen. Die folgenden Prinzipien beziehen sich auf die Darstellung von Wissen in diesen Sprachen.

Analyse

\[P_4 \quad \text{Der darzustellende Objektbereich ist gedanklich in eine nichtleere Menge von Basisobjekten, in eine Menge von Relationen, und, falls erforderlich, in eine Menge von Operationen zu zerlegen.} \]

'Objekt' wird hier als Oberbegriff von gedanklichen und empirischen Dingen verstanden. Basisobjekte können daher z.B. Grundbegriffe oder etwa chemische Elemente sein; sie können sich jedoch auch auf Objektbruchstücke beziehen, die es für sich nicht gibt.

\[P_4 \] beruht auf der Annahme, daß die Welt aus realen, zueinander in Beziehung stehenden, eventuell auch miteinander wechselwirkenden Objekten besteht. Durch die Analyse wird ein Objektbereich gedanklich gewissermaßen in seine elementaren Einzelteile zerlegt, um die Gegenstücke zu den Sprachbausteinen zu bekommen. Dagegen ließe sich einwenden, daß nicht für alle Objektbereiche die diskursive Auffassung angemessen sei. Doch da Sprachen - auch die natürlichen - von Natur aus diskursiv sind, müssen solche Inhalte entweder dieser Sprachanforderung angepaßt werden, oder man muß, wenn dies zu einem Konflikt mit dem Treueprinzip führt, auf ihre sprachliche Darstellung verzichten.
Synthese

Während die Analyse dazu dient, die Primitiven herauszufinden, befaßt sich die Synthese damit, das darzustellende Wissen mit ihrer Hilfe auszudrücken:

P5 Es müssen geeignete allgemeine Leitbegriffe und Regeln sowie elementare Strukturgesetze zur Erfassung des Objektbereiches aufgestellt werden.7

Wie weit die Analyse zu treiben ist, zeigt sich daran, ob die durch sie ermittelten Ausdruckselemente zur Erfassung des Wissens ausreichen. Analyse und Synthese sind daher wechselseitig aufeinander bezogene Arbeitsgänge.

Da auch das Syntheseergebnis sprachlich fixiert werden muß, die Darstellungs sprache aber noch nicht zur Verfügung steht, ist man zunächst noch auf Ersatzsprachen angewiesen; meist wird es eine durch technische Mittel angereicherte natürliche Sprache sein. Das Syntheseergebnis ist immer relativ: es hängt von der Wahl der Primitiven ab. Außerdem läßt der gleiche Satz von Primitiven verschiedene Strukturgesetze zu, denn es gibt viele Aspekte, nach denen Objekte geordnet werden können. Vereinfacht gilt: Je komplexer die Primitiven sind, desto einfacher werden i.a. die zugehörigen Regeln ausfallen und umgekehrt. Auch die Leitbegriffe und Regeln bedingen sich wechselseitig. Es ist daher problematisch von Strukturen zu sprechen, die in den Objekten zu finden seien und die umkehrbar eindeutig in einer Sprache abgebildet werden könnten.

Wie die Ergebnisse von Analyse und Synthese sprachlich zu erfassen sind, regeln die folgenden Prinzipien.

Kodierung

Die unmittelbar der Objektwelt, d.h. den Primitiven zugeordneten Zeichen heißen ‚Terminale‘, solche für die Leitbegriffe heißen ‚Nichtterminal‘:

P6 Jeder Leitbegriff muß umkehrbar eindeutig einem Nichtterminal und jedes Primitiv umkehrbar eindeutig einem Terminal zugeordnet werden; ausgenommen ist diejenige Relation, die bereits durch die Verkettung der Zeichen dargestellt wird.

Solch eine Zuweisungsvorschrift zwischen den Zeichen und den Primitiven bzw. Leitbegriffen läßt sich als Kode (im Sinne der Kodierungstheorie) verstehen; über den Kode wird den Zeichen eine Bedeutung zugewiesen. Es ist dabei gleichgültig, welche Zeichen gewählt werden. Doch da die Ähnlichkeit eines Zeichens mit dem

7 Leitbegriffe sind Begriffe, die für die Darstellung benötigt werden; es ist notwendig, sie von Begriffen zu unterscheiden, die selbst Gegenstand der Darstellung sein können.
Ding, das es bezeichnet, als Gedächtnishilfe dienen kann, ist es manchmal für die Handhabung vorteilhaft, solche zu verwenden, denen man es ansehen kann, welche Funktion sie haben. Nur Terminale haben eine echte Stellvertreterfunktion: sie stehen als sinnlich Wahrnehmbares für etwas, das (eventuell nur vorübergehend) nicht sinnlich wahrnehmbar ist. Nichtterminale repräsentieren rein gedankliche, aber auf die Objektwelt Bezug nehmende Entitäten. Die Unterscheidung der beiden Zeichentypen bereitet die in P_2 geforderten zwei Sprachebenen vor.

Objektdarstellung

Die Basisobjekte eines Bereichs können Objektbuchstücks, aber auch bereits reale atomare Objekte sein; es wird nur gefordert, daß sich mit ihnen Objekte von beliebiger Komplexität zusammensetzen lassen. Wie solche Objekte sprachlich darzustellen sind, regelt

P_7 Ein Objekt wird in zwei Schritten dargestellt: Es wird zuerst gedanklich in seine Primitiven zerlegt, und mit Hilfe der ihnen zugehörigen Zeichen wird dann sein sprachlicher Ausdruck so gebildet, daß die Verhältnisse zwischen den Primitiven im Objekt den Verhältnissen zwischen den Terminalen entsprechen.\(^9\)

In P_6 wird eine Isomorphiebeziehung formuliert. Im Gegensatz dazu beruht die sprachliche Darstellung von Objekten nach P_7 auf einer strukturellen Äquivalenz, die nur noch eine Homomorphie zuläßt. Einfache Beispiele hierfür sind chemischen Formeln. bzw. Reaktionsgleichungen.

\(^8\) GP VII 192; A VI.1 200.

\(^9\) VE 1482 = B 80f; ähnlich im *Dialog* VE 63, 64.
Darstellung von Gesetzmäßigkeiten

Daß Wissensdarstellung über die einfache Objekterfassung hinausgeht, scheint erstmals LAMBERT klar formuliert zu haben:

»Die Zeichen der Begriffe und Dinge sind ferner im engeren Sinne wissenschaftlich, wenn sie nicht nur überhaupt die Begriffe oder Dinge vorstellen, sondern auch solche Verhältnisse anzeigen, daß die Theorie der Sache und die Theorie ihrer Zeichen miteinander verwechselt werden können ... Die Theorie der Sachen "set" auf die Theorie der Zeichen zu reduciren ...«10

Danach unterscheidet LAMBERT zwei Arten von struktureller Äquivalenz: die in P\textsubscript{7} zum Ausdruck gebrachte zwischen den Objekten und ihrer sprachlichen Darstellung und die zwischen Sach- und Zeichenthese:

P\textsubscript{8}: Gesetzmäßigkeiten über die Objekte müssen formuliert werden als Gesetzmäßigkeiten zwischen den Zeichen.

I.3. Wie kommt Wissen in ein Zeichensystem?

Inhalt erfassen bedeutet nach P\textsubscript{1} Teilmengenbildung; darauf beziehen sich die drei letzten Prinzipien. Sie regeln die Erfassung von drei verschiedenen Inhaltsarten; es kommen daher drei verschiedene Teilmengen vor, so daß die Grundfrage der Darstellungstheorie ebenfalls eine dreiteilige Antwort erfordert: Einzelne Terminalale werden aus der Menge aller möglichen Zeichen (willkürlich) ausgewählt; sie haben keinen Bezug zur Objektwelt, sondern erhalten ihre Bedeutung durch Zuweisung (P\textsubscript{8}). Terminalketten repräsentieren die aus Primitiven zusammengesetzten komplexen Objekte. Sind die Primitiven eines Objektes und damit auch die zugehörigen Terminale bekannt, dann besteht jetzt die Trägermenge aus allen Ketten, die aus diesen Terminalen gebildet werden können. Von ihr muß eine Teilmenge gebildet werden; sie besteht nur aus einem einzigen Element, nämlich aus derjenigen Kette, bei der die in P\textsubscript{7} geforderte Strukturäquivalenz zum darzustellenden Objekt erfüllt ist. Die Kette erhält ihre Bedeutung ebenfalls durch Zuweisung, doch diese ist nicht mehr willkürlich, sondern an den Aufbau des darzustellenden Objekts gebunden. Terminale, ob als Einzelzeichen oder in Ketten, beziehen sich stets auf die Objektwelt. Trägermenge bei der dritten Inhaltsart sind die Menge aller Ketten, die aus allen Terminalen gebildet werden können. Aus

10 LAMBERT, Neues Organon II, p. 16.
dieser sind als Teilmengen all derjenigen Ketten auszugegrenzen, die im Sinne von P7 sinnvoll sind. Bei endlichen Teilmengen kann dies durch Auflisten ihrer Elemente erfolgen. Doch ist das nur der triviale Fall; i.a. bezieht sich die Darstellung auf eine Teilmenge, die aus beliebig vielen nicht mehr auflistbaren Elementen besteht.11 Um diese von den anderen abgrenzen zu können, müssen Merkmale gefunden werden, die nur sie, nicht aber die anderen Elemente besitzen. Merkmale drücken Regularitäten aus, und zwar sowohl in der Zeichen- als auch in der Dingwelt; P\textsubscript{8} fordert eine Äquivalenz zwischen beiden.

Es bleibt noch zu klären, wie zwischen Sprach- und Objektwelt Strukturäquivalenzen zustande kommen können.

Weil Terminalketten, als sprachliche Gebilde, notwendig eine räumliche Anordnung haben müssen, Zeichen in einer Zeichenkette also immer in einer Beziehung zueinander stehen, verkörpern sie durch diese Beziehungsstruktur stets potentielle Faktenwissen, dem strukturäquivalentes reales Faktenwissen zugeordnet werden kann (P\textsubscript{7}). Strukturäquivalenz besagt nicht, die Lagebeziehung der Zeichen müsse notwendig auch der Lagebeziehung der Dinge entsprechen, vielmehr kann irgendeine Relation zwischen den Dingen gemeint sein. Die Zeichenkette H\textsubscript{2}O z.B. drückt aus, das zwei gleiche Zeichen mit einem anderen in Beziehung stehen. Man beschreibt mit ihr bekanntlich ein Wassermolekül; aber sie würde sich auch dazu eignen, irgendwelche anderen Verhältnisse zu beschreiben, sofern diese mit ihr strukturäquivalent sind.

Auch Gesetzmäßigkeiten müssen durch Zeichenketten (meist als „Regel“ bezeichnet) dargestellt werden, doch die Beziehungen der Zeichen solcher Ketten beziehen sich nicht mehr ausschließlich auf die Objektwelt. Dies kommt dadurch zum Ausdruck, daß sie syntaktische Zeichen enthalten (z.B. den Regelpfeil und mindestens ein Nichtterminal; darüber hinaus können auch Terminale vorkommen. Eine Regel kann nun sowohl als eine Gesetzesaussage oder als eine Handlungs- vorschrift interpretiert werden. In der Wissensdarstellung ist somit das Gesetzeswissen und das prozedurale Wissen äquivalent.

11 „Auflistbar“ bedeutet: die Elemente können der Reihe nach alle angeführt werden. „Auflistbar“ ist nicht mit dem mathematischen Begriff „abzählbar“ zu verwechseln.
II. Wissensdarstellung mit formalen Sprachen

Die Wissensdarstellung mit formalen Sprachen bietet die Möglichkeit, die Darstellungsprinzipien mit einfachen Mitteln zu veranschaulichen. Zugleich schafft sie die zur Erläuterung der LEIBNIZschen Ideen notwendige moderne begriffliche Basis. Die Ausführungen beschränken sich auf das Allernotwendigste; formale Sprachen erlauben noch tiefere Einblicke in die Darstellungsproblematik als hier angegeben.

II.1. Formale Sprachen: Grundbegriffe12

Gegeben sei ein Terminal-Alphabet Σ. Die Menge aller Sätze,13 die insgesamt mit den Elementen von Σ gebildet werden können, sei die Menge Σ^*. Eine formale Sprache L14 ist definiert als eine wohlbestimmte Teilmenge von Σ^*. 'Wohlbestimmt' heißt: es ist genau festgelegt, welche Sätze aus Σ^* zu ihr gehören. Die Festlegung erfolgt über (Grammatik)regeln, die angeben, wie die Sätze zu bilden sind. Eine formale Sprache ist somit durch ihre Grammatik sowie durch Angaben darüber, wie die Grammatik zu handhaben ist, eindeutig festgelegt.

Grammatik für Wortstrukturen

Eine Grammatik für Wortstrukturen G setzt sich aus dem Quadrupel

$$G = (V_N, \Sigma, P, S);$$

zusammen, dabei ist

1. V_N das Alphabet der Nichtterminalen zur Erfassung der Leitbegriffe,
2. Σ das Alphabet der Terminalen zur Erfassung der Primitiven.
3. P ist eine endliche Menge von Ersetzungsregeln (Produktionen), bezeichnet durch $\alpha \rightarrow \beta$, α und β stellen Zeichenketten über $V_N \cup \Sigma$ dar; α muß mindestens ein Zeichen aus V_N enthalten.
4. $S \in V_N$ ist das Startzeichen.

Die Herleitung eines (syntaktisch korrekten) Satzes (Top-down Parsing) beginnt mit dem Startzeichen; sie endet erfolgreich, wenn keine Regel mehr angewandt werden kann und wenn die Zeichenkette nur noch aus Terminalen besteht. Bei der Syntaxanalyse (Bottom-up Parsing) verläuft die Ableitung in umgekehrter Richtung: Ausgehend von einer nur aus Terminalen gebildeten Zeichenkette wird versucht, durch Rückwärtsanwenden der Regeln das Startsymbol zu erreichen; gelingt dies, ist die Zeichenkette ein Satz der betreffenden Sprache, d.h. sie ist bezüglich der verwendeten Grammatik syntaktisch korrekt.

12 Genaueres s. z.B. SALOMAA (1973).
13 Statt 'Sätze' heißt es oft 'Wörter'. Im folgenden werden Wörter als Einheiten aufgefaßt, die in Σ als Zeichen vertreten sind. Folglich stellen die mit den Elementen von Σ gebildeten Zeichenketten Sätze dar.
14 Auch Produktionssystem (Semi-Thue-System, Regelsystem, kanonisches System) genannt.
Beispiel: Grammatik zur Konstruktion der Binärziffern \{ 0, 1, 10, 11, 100, ... \}

\[V_N = \{ S, A, B \} \]
\[\Sigma = \{ 0, 1 \} \]
\[P: \]
(1) \(S \rightarrow A \)
(2) \(S \rightarrow 1B \)
(3) \(B \rightarrow A \)
(4) \(B \rightarrow 0B \)
(5) \(B \rightarrow 1B \)
(6) \(A \rightarrow 0 \)
(7) \(A \rightarrow 1 \)

Die Ziffer ‘1011’ z.B. kann mit der obigen Grammatik folgendermaßen erzeugt werden:

\[S \rightarrow^5 1B \rightarrow^4 10B \rightarrow^5 101B \rightarrow^3 101A \rightarrow^7 1011. \]

Aus dieser Kurzcharakteristik ergeben sich folgende Beziehungen zu den drei ersten Darstellungsprinzipien:

Trägermenge ist \(\Sigma^* \), sie enthält alle Zeichenketten, die sich mit einem Terminal-Alphabet erzeugen lassen. Nicht jedes ihrer Elemente ist ein sinnvoller Satz. Gesetzeswissen darstellen heißt, die nicht sinnvollen von den sinnvollen Sätzen abzugrenzen. Letztere bilden - als Teilmengen von \(\Sigma^* \) - eine durch eine Grammatik charakterisierbare formale Sprache (P₁). Gesetzeswissen in einer formalen Sprache darstellen, bedeutet daher, eine geeignete Grammatik aufstellen.

Unterschiedliche Sprachebenen werden durch die Unterscheidung von Terminalen und Nichtterminalen ermöglicht (P₂). Die Terminale, aus denen die Sätze einer formalen Sprache bestehen, bilden den objektsprachlichen Anteil. Nichtterminale werden als „Hilfszeichen“ zur Darstellung der Grammatik gebraucht; sie gehen als Leitbegriffe in die Herleitung der Sätze, nicht aber in die Sätze selbst ein. Sie ermöglichen eine rekursive Regelanwendung, d.h. eine Regel kann - wie z.B. Regel 4 oder 5 im obigen Beispiel - beliebig oft angewendet werden, so daß die strukturellen Eigenheiten einer unendlichen Menge von Wörtern in einer sehr kompakten Weise durch wenige Zeichen und eine endliche Regelmengen erfaßt werden können.

Gesetzeswissen darstellungstreul in einer formalen Sprache darstellen heißt, ihre Syntax so festlegen, daß sie mit dem darzustellenden Wissen identisch ist (P₃). Das ist dann der Fall, wenn jeder ihrer Sätze Faktenwissen über das darzustellende Gebiet enthält, und wenn es kein Faktenwissen dieses Gebietes gibt, das nicht durch Sätze der Sprache erfaßt wurde. ‘Wahr/sinnvoll’ ist somit gleichbedeutend
mit ‘grammatisch korrekt’, das Wissen wurde redundanzfrei dargestellt: die betretende Sprache ist „reine Information“.

Die Prinzipien P₁ - P₃ werden von LEIBNIZ nicht explizit erwähnt. In seinen Darstellungsversuchen befolgt er jedoch das erste Prinzip; das dritte hielt er wohl für selbstverständlich. P₂ hingegen scheint er nicht beachtet zu haben; wir werden später noch darauf zurückkommen.

II.2. Characteristica universalis als Frühform einer formalen Sprachen

Daß LEIBNIZ nach heutigem Verständnis danach strebte, Wissen mit formalen Sprachen darzustellen und daß seine characteristica universalis als Frühform einer formalen Sprache anzusehen ist, läßt sich bereits aus Äußerungen wie der folgenden erschließen:

Die ars characteristica ist die Kunst, Zeichen so zu gestalten und anzuordnen, daß sie Gedanken wiedergeben, oder so, daß die Beziehungen, die sie zueinander haben, so sind, wie die Gedanken sie zueinander haben. Ein Ausdruck [solch einer künstlichen Sprache] ist die Aneinanderreihung von Zeichen, die den Gegenstand, der ausgedrückt wird, darstellen.

Bestärkt wird diese Auffassung aber vor allem durch seine zahlreichen Arbeiten im Sinne der Darstellungsprinzipien P₄ – P₇.

Analyse, Synthese, Kodierung

¹⁵ ‘Redundanzfrei’ bezieht sich hier auf die inhaltliche Ebene, d.h. es kann nichts weggelassen werden ohne den Inhalt zu verfälschen, und jeder Zusatz ist überflüssig. Im Zeichenbereich kommt jedoch noch weiterhin Redundanz vor, und zwar sogar auf zwei verschiedenen Ebenen: Zum einen gibt es von einem Objektbereich i.a. beliebig viele darstellungstreu, also inhaltlich gleichwertige Varianten, die sich aber hinsichtlich ihres Umfanges, z.B. hinsichtlich der Anzahl der Grammatikregeln, erheblich voneinander unterscheiden können. Zum anderen ist eine Grammatik ein norm a- ler Text, dessen Umfang sich stets mit üblichen Kompressionsverfahren reduzieren läßt.

¹⁶ VE 1482 = B 80f; ähnlich GP VII 192.

¹⁷ VE 900ff = GP VII 292ff; ähnlich bereits DESCARTES, *Discourse* II, 14ff.
sprünghliche" zurückführen, die, einmal gefunden, gewissermaßen als Alphabet der menschlichen Gedanken dienen könnten.

LEIBNIZ unterscheidet klar zwischen Basisobjekten (Grundbegriffe oder Grundgedanken, logische Ausdrücke, elementare geometrische Figuren) und Relationen (Äquivalenz, Ordnungsrelationen, Ähnlichkeit, Kongruenz) und ordnet ihnen umkehrbar eindeutig Zeichen zu. Er kannte somit die Prinzipien $P_4 - P_6$. Damit hatte er sich die Grundvoraussetzungen für eine Wissensdarstellung in formalen Sprachen geschaffen.

Lex expressionum

LEIBNIZ scheint erstmals erkannt zu haben, daß Darstellung auf struktureller Äquivalenz zwischen Objekt- und Zeichenwelt beruht (P_7):

Offenbar konnte er sich nicht von seiner Idee lösen, Wörter als "Rechensteine" zu gebrauchen. Das hatte zur Folge, daß er – unter Mißachtung von P_2 - nur Terminale benutzte, also Zeichen, die einen direkten Bezug zur Dingwelt haben. Es lassen sich zwar mit ihnen beliebig komplexe Objekte beschreiben, aber seine

18 VE 1204 = GP VII 205 = X 112.
20 A VI.1 200; VE 1203 = X110f.
21 VE 1483 = E 459; ähnlich im Dialog VE 63, 64.
22 VE 1566 = GP VII 31. Es trifft daher nicht zu, LEIBNIZ habe ausschließlich eine kombinatorische Auffassung des Begriffs vertreten.
23 Sein "Logikkalkül" ist detailliert beschrieben in: SWOYER, CHRIS: Leibniz's Calculus of Real Addition.
"Grammatikregeln" sind, weil sie sich auf Terminale beziehen, in ihrer Komplexität und damit in ihrer Ausdrucksmächtigkeit beschränkt: sie können nur Umformungen, aber nicht die rekursive Erzeugung von Terminalketten beschreiben. Hierzu sind Nichtterminale erforderlich; ihre Bedeutung scheint LEIBNIZ nicht erkannt zu haben, obwohl er die Rekursivität mehrfach erwähnt und sie z.B. anhand der Binärziffern veranschaulicht.

Die Wissensdarstellung mit echten formalen Sprachen schränkt durch Wahl eines geeignetens Terminal-Alphabets die Trägermenge zunächst nur ein, um dann zusätzlich die sinnvollen Sätze über eine Grammatik aus ihr herauszuheben. Der Kombinationsansatz kann als Grenzfall dieses Ansatzes angesehen werden. Er beruht auf der sehr einfachen „Grammatikregel“ „alle Zeichenkombinationen bilden“; damit fällt aber die dadurch ausgezeichnete Teilmenge mit der Trägermenge Σ^* zusammen. Soll die Darstellungstreue nicht verletzt werden, so ist der Kombinationsansatz darauf angewiesen, eine gehaltvolle Trägermenge zu finden. Die ganze Last der Darstellung ruht somit auf dem Herausfinden der „wahren“ Primitiven, eine Aufgabe, mit der LEIBNIZ viel Zeit vergeudete. Denn es ist sehr fraglich, ob für solch eine Grammatik überhaupt geeignete Primitive gefunden werden können. Liegt hingegen die Grammatik nicht fest, dann ist eine Primitivenwahl möglich, aber sie ist nicht eindeutig, so daß es auch hier keine wahren Primitive geben kann.

III. LEIBNIZ-Programm

Die bisherigen Ausführungen bezogen sich auf die technischen Aspekte der Darstellung; dabei wurde stilschweigend vorausgesetzt, daß Wissensdarstellung etwas Nützliches sei. Doch wozu dient eigentlich Wissensdarstellung? Welche Vorteile ergeben sich durch sie? Die Antworten auf diese Fragen sind in den unter dem Namen „LEIBNIZ-Programm“ zusammengefaßten Zielen enthalten. Es ist wie folgt charakterisiert:

Das LEIBNIZ-Programm ist die Suche nach einer künstlichen Sprache als Darstellungsformalismus für ein bestimmtes Wissensgebiet, um
- Wissen kompakt und eindeutig zu erfassen,
- Sicherheit zu bieten,
- kontroverse Aussagen zu klären und
- neue Aussagen zu erzeugen.

24 VE 692 = X 21, VE 1054 = X 24f, VE 1054 = X 25, VE 1055 = X 27, VE = 1205 = GP VII 206 = X 114.
25 VE 1054f = X 25f.
Wissen kompakt und eindeutig erfassen

Sicherheit durch Zeichenoperationen

Unser Verstand, so LEIBNIZ, ist von unsicherer Zuverlässigkeit und wird, »sobald er sich von der Erfahrung entfernt, sogleich von der Dunkelheit der Dinge und ihrer Vielfalt verwirrt, er wird beherrscht von trügerischen Mutmaßungen und eißer Meinung und vermag kaum ohne Widerwäßtigkeiten voranzukommen.«

Sprache als (Denk)werkzeug (organon mentis)

26 E 187.
27 A VI.2, 481.
28 VE 811 = C 351 = X 96 et passim; GP VII 14, 22 et passim.
29 A VI. 2 481.
30 VE 972 = C 335 = E 185; VE 811 = C 351 = X96; VE 819 = C 420; GP VII 11, 14, 22, 57 usw.; VE 311 = C 155 = X 90; E 187, 196; LEIBNIZ: Unvorgreifliche Gedanken, § 5.
31 E 187.
Beide Verfahren beruhen auf der gleichen Grammatik; sie unterscheiden sich nur darin, wie sie angewendet wird.32

Wer mit Wissensdarstellung nicht vertraut ist, kann bei Durchsicht der zahlreichen Fragmente leicht den Eindruck gewinnen, LEIBNIZ habe verworrene Ziele verfolgt. Doch der scheinbar chaotische Eindruck läßt sich durch die Vielfalt der von ihm untersuchten Themen und durch die unterschiedlichen Teilaufgaben erklären, die eine Wissensdarstellung mit sich bringt. Die folgende Übertragung seiner Begriffe in heutige Ausdruckswweise soll der Orientierung dienen. Sie spiegelt trotz ihrer Anlehnung an formale Sprachen die verschiedenen, für die Realisierung des LEIBNIZ-Programms notwendigen Teilaufgaben wider:

<table>
<thead>
<tr>
<th>characteristic universalis</th>
<th>Formale Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>ars characteristicia</td>
<td>Wissensdarstellung33</td>
</tr>
<tr>
<td>ars inveniendi</td>
<td>Top-down Parsing</td>
</tr>
<tr>
<td>ars ludicandi</td>
<td>Bottom-up Parsing</td>
</tr>
<tr>
<td>analysis</td>
<td>Primitivenzahl</td>
</tr>
<tr>
<td>synthesis</td>
<td>Begriffe erkennen und Grammatik erschließen</td>
</tr>
<tr>
<td>encyclopedia</td>
<td>Gesamtheit der wissenschaftlichen Erkenntnisse34</td>
</tr>
<tr>
<td>scientia generalis</td>
<td>Wissenschaftstheorie35</td>
</tr>
</tbody>
</table>

Einwände gegen das LEIBNIZ-Programm

Daß die Umsetzung seines Programms keine leichte Aufgabe sein würde, darüber war sich LEIBNIZ jederzeit im klaren, aber er zweifelte niemals an seiner Realisierbarkeit. In Philosophie und Logik gilt es jedoch heute als undurchführbar. Häufig beruht die Ablehnung lediglich auf Ressentiments, die auf ein mangelndes Verständnis zurückgehen. Ein typisches oft tradiertes Beispiel hierfür ist die folgende Äußerung von HEGEL:

»Diese LEIBNIZsche Anwendung des kombinatorischen Kalküls auf den Schluß und auf die Verbindung anderer Begriffe unterschied sich von der verrufenen Lullianischen Kunst durch nichts, als daß sie von Seiten der Anzahl methodischer war, übrigens an Sinnlosigkeit ihr gleichkam. – Es hing hiermit ein Lieblingsgedanke LEIBNIZens zusammen, den er in der Jugend gefaßt und der Unreifeheit und Seichtigkeit desselben unerachtet auch späterhin nicht aufgab, von einer allgemeinen Charakteristik der Begriffe – einer Schriftsprache, worin jeder Begriff dargestellt werde, wie er eine Beziehung aus anderen ist oder sich auf andere beziehe..."

32 Es ist interessant, daß auch LEIBNIZ an eine Sprache denkt, die beide „Künste“ zugleich ermöglicht (VE 670 = GP VII 184).

33 Die Kunst mit einer Zeichensprache umzugehen (ars characteristicia), darf nicht mit der Zeichensprache selbst, d.h. mit der characteristicia universalis verwechselt werden.

34 Diese Interpretation wird z.B. gestützt durch den Anfang von Fragment [De l’usage de l’art des combinatons] (VE 1335). Er lautet zunächst „Toute l’Encyclopédie ...“; dies wird von LEIBNIZ gestrichen und durch „Le corps entier des sciences ...“ ersetzt.

35 S. VE 1354: "Logica est scientia generalis."
Die meisten ernsthaften Einwände beruhen auf einer einseitigen logischen Sichtweise. Gegen das LEIBNIZ-Programm wird u.a. geltend gemacht:

- es widerspreche grundlegenden logischen/metamathematischen Gesetzen;
- es könne keine universelle Kalkülssprache geben;
- seine Realisierung setze abgeschlossenes und das heißt soviel wie nicht verfügbares Wissen voraus.

Träfen die Einwände zu, wäre die Unmöglichkeit der Wissensdarstellung sowohl für die Künstliche Intelliqenz als auch für die theoretischen Wissenschaften erwiesen. Dagegen sprechen allerdings die auf diesen Gebieten erzielten Erfolge; die Einwände können daher nicht stichhaltig sein:

Mit den *logischen bzw. metamathematischen Gesetzen* sind i.a. der Unvollständigkeitssatz von GÖDEL sowie die Unentscheidbarkeitssätze gemeint. Sie sagen etwas über den Formalismus selbst aus. Ob sie auch unüberwindbare Einschränkungen für das LEIBNIZ-Programm mit sich bringen, hängt von der jeweiligen Aufgabenstellung ab. So sind z.B. bei der formalsprachlichen Wissensdarstellung ars iudicandi und ars inveniendi realisierbar, sofern nicht über kontextsensitive Grammatiken hinausgegangen wird. Um ihre Unmöglichkeit zu beweisen, muß man daher zeigen, daß der betreffende Objektbereich komplexere Grammatiken als diese erfordert. Es ist daher nicht zulässig, aufgrund dieser Sätze ein generelles Unmöglichkeitsverdikt auszusprechen.37 Unter einer *universellen Kalkülssprache* kann man

(1) eine einzige universelle Sprache für das gesamte Wissen oder
(2) eine allgemeine formale Darstellungsmethode

verstehen. Nur für die erste Deutung wäre die Kritik berechtigt. LEIBNIZ‘ Äußerungen sind nicht immer eindeutig. Doch seine Versuche, spezielles Wissen durch spezielle „Grammatiken“ darzustellen sowie Formulierungen wie

»Die allgemeine Charakteristik [Specieuse generale] umfaßt tausend Arten, und die Algebra enthält nur eine.«38

weisen auf Deutung (2) hin. Danach ist die characteristica universalis nicht als einzige Universalsprache, sondern– wie die formalen Sprachen – als Sprachklasse aufzufassen, charakterisiert durch ein universelles Schema. Auf formale Sprachen bezogen hieße dies: nicht alles Wissen in einer einzigen Sprache, sondern nur:

36 HEGEL, Wissenschaft der Logik: Die Lehre vom Begriff, p. 128; ähnliche negative Äußerungen über den PLOUCQUETschen Kalkül p. 128f, p. 129.
37 S. etwa KRÄMER, p. 138ff.
38 VE 1336 = E 206.
alles Wissen formalsprachlich darstellen, wobei damit zu rechnen ist, daß unter-
verschiedliche Gebiete auch unterschiedliche Grammatiken erfordern. Die Realisie-
rung des LEIBNIZ-Programms verlange, so wird ferner argumentiert, die Zerle-
gung sämtlicher Begriffe in Grundbegriffe; dies sei aber nur möglich, wenn sich
keine neuen Erkenntnisse mehr ergeben, d.h. alles Wissen muß zur Realisierung
bekannt sein.39 Das wäre sicherlich eine unerfüllbare Voraussetzung; außerdem
wäre dann die an inveniendi überflüssig. Doch wie bereits LEIBNIZ erkannte,
setzt Wissensdarstellung weder vollständiges noch gesichertes Wissen voraus:

»Obwohl indessen diese Sprache von der wahren Philosophie abhängt, hängt sie nicht von de-
en Vollendung ab. D.h.: diese Sprache kann aufgesetzt werden, obwohl die Philosophie nicht
vollkommen ist, und in dem Maße, wie das Wissen der Menschen wachsen wird, wird auch
 diese Sprache wachsen. Inzwischen wird sie von einer außerordentlichen Hilfe sein, sowohl
um sich ihrer zu bedienen, bei dem was wir wissen, als auch um zu sehen, was uns fehlt ...«40

Darüber hinaus erzwingt das LEIBNIZ-Programm eine systematische Aufberei-
tung des darzustellenden Wissens41 und eine folgerichtige Vorgehensweise, so
daß es selbst schon dann günstige Auswirkungen auf ein Sachgebiet hat, wenn es
nur teilweise verwirklicht werden konnte.

Betrachtet man die Charakterisierung der zu erkennenden Muster als Wissen, so
ist die syntaktische Mustererkennung ein einfaches Beispiel für die Darstellung
von Wissen und die Nutzung des dargestellten Wissens.42 Sie kann als Beweis
gelten, daß das LEIBNIZ-Programm in formalen Sprachen zumindest für ein spe-
zielles Wissensgebiet realisierbar ist. Um umfangreichere Wissensgebiete erfassen
to können, werden ausdrucksstärkere Darstellungsmittel gebraucht, z.B. mathe-
masische. Sie konnten besonders erfolgreich in der Physik angewendet werden, so
daß man sagen kann, das LEIBNIZ Programm ist heute vor allem in den Theorien
der Physik verwirklicht.

IV. Folgerungen aus der Wissensdarstellung

Die Wissensdarstellung steht im Schnittpunkt mehrerer Theorien, von denen die
Erkenntnis-, Sprach- und Wissenschaftstheorie die wichtigsten sind. Entsprechend
vielseitig und umfangreich sind daher auch die aus ihr ableitbaren Folgerungen.
LEIBNIZ hat die Bedeutung der Wissensdarstellung erkannt; davon zeugen seine
gereadzu schwärmischer Äußerungen über den Nutzen, den seine als charakte-
ristisch mit sich bringen sollte. Die Naturwissenschaften sind zwar dem von ihm
eingeschlagenen Weg gefolgt, aber ohne sich der Darstellungsproblematik bewußt
zu sein: Nichts wurde bisher so vollständig mißverstanden, wie die Rolle der Wis-

40 VE 1481 = X 451 (hier jedoch nicht als Leibniztext gekennzeichnet).
41 X 60; ähnlich: C 296.
42 Beispiel s. JAENECKE, Elementary Principles, p. 93ff. Über die syntaktische Mustererkennung
s. z.B. FU (1982).

Verhältnis von natürlichen und künstlichen Sprachen

Künstliche Sprachen werden oft als verkürmte Versionen der natürlichen Sprachen angesehen, die, gemessen am Reichtum der letzteren, elementar und arm an Ausdrucksmöglichkeiten seien. Doch bereits die Komplexität der formalen Sprachen unterliegt keinen Einschränkungen, von anderen Formalismen ganz abgesehen. Im übrigen stehen sie nicht in einer Konkurrenz zu den natürlichen Sprachen, denn beide Sprachtypen dienen unterschiedlichen Zwecken – die natürlichen Sprachen hauptsächlich der Kommunikation, die künstlichen hauptsächlich der Wissensdarstellung.

Kommunikation erfordert eine Sprache, in der nahezu alle Inhalte erfaßt werden können; damit eine Sprache diese Eigenschaft haben kann, müssen in ihr Syntax und Semantik weitgehend entkoppelt sein. Aber dann können in ihr auch Irrtümer und Unsinn ausgedrückt werden, denn hier sichert die grammatische Korrektheit nicht mehr die Sinnhaftigkeit. Die lose Kopplung ist der Preis, der bezahlt werden muß, um offen zu sein für (nahezu) jeden Inhalt. Es gibt auch formale Sprachen, in denen „kommuniziert“ werden kann, z.B. die Programmiersprachen. Bei ihnen sagt die syntaktische Korrektheit ebenfalls nichts über die Sinnhaftigkeit aus. Wissensdarstellung dagegen erfordert Flexibilität in der Grammatik, um zu erreichen, daß „syntaktisch korrekt“ zugleich auch „inhaltlich korrekt“ bedeutet. Diese Sprache paßt dann zwar nur für genau diesen Inhalt, aber dieser wird von ihr vollständig erfaßt, d.h. für ihn ist die Sprache reichhaltig genug, so daß weder ein Verlust an Inhalten noch ein Bedürfnis nach Interpretation entsteht. Die folgende Tabelle faßt die Gegenüberstellung noch einmal zusammen:

<table>
<thead>
<tr>
<th>Ziel</th>
<th>natürliche Sprache</th>
<th>formale Sprache</th>
<th>formale Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grammatik</td>
<td>Kommunikation</td>
<td>Wissensdarstellung</td>
<td>Rechnersteuerung</td>
</tr>
<tr>
<td>Kopplungsgrad Syntax/Inhalt</td>
<td>niedrig</td>
<td>muß bestimmt werden</td>
<td>wird festgelegt</td>
</tr>
<tr>
<td>Reichweite</td>
<td>nahezu alle Inhalte</td>
<td>genau ein Objektbereich</td>
<td>alles Berechenbare</td>
</tr>
</tbody>
</table>

Ihre zum Teil gegensätzlichen Eigenschaften sollten nicht zum Anlaß genommen werden, die beiden Sprachtypen gegeneinander auszuspielen: Beide Funktionen werden in den Wissenschaften gebraucht. Es bleibt jedoch festzuhalten, daß obwohl natürliche Sprachen ein nahezu unbegrenztes Spektrum an Inhalten aufnehmen können, sie dennoch nicht alle Möglichkeiten ausschöpfen, die eine Sprache bietet.

43 KLAUS, Semiotik und Erkenntnistheorie, p. 41.
Man hat LEIBNIZ bezüglich seiner verschiedenen Äußerungen über Sprache In-
konsistenz vorgeworfen;
manche Autoren behaupten sogar, er habe die natürli-
che Sprache „kalküllisieren“ bzw. durch eine ideale künstliche Sprache ersetzen
wollen.
Diesem Vorwurf liegt die Vorstellung zugrunde, LEIBNIZ habe eine
Sprache sowohl für die Kommunikation als auch für die Wissensdarstellung zu
konstruieren versucht.
Er hatte jedoch im Gegensatz zu seinen Interpreten er-
kannt, daß beide Anforderungen nicht mit einer einzigen Sprache zu verwirkli-
chen sind:

[DALGARNOs und WILKINS'] Sprache oder Schrift dient nur dazu, daß den durch
Sprache Getrennten eine bequem herzustellende Kommunikation ermöglicht wird; doch
die wahre characteristica realis, wie sie von mir angestrebt wird, müßte unter die geeig-
netsten Werkzeuge des menschlichen Geistes gezählt werden, indem sie nämlich ein un-
schlagbares Mittel in sich trägt sowohl für das Entdecken als auch für das Aufbewahren
und das Beurteilen.

Es gibt freilich von LEIBNIZ auch Überlegungen zu einer für die wissenschaftli-
che Kommunikation geeigneten am Lateinischen orientierten Sprache; er nannte
sie u.a. ‚lingua philosophica‘, ‚lingua rationis‘, ‚lingua universalis‘.
Der Ein-
druck von Inkonsistenz kommt somit durch die irrtümliche Gleichsetzung dieser
Sprache mit der characteristica universalis zustande.

„Formales“ Operieren mit Symbolen

‘Formal‘ wird oft abschätzsig als ‚abstrakt‘, ‚mechanistisch‘, ‚ohne Inhalt‘ bewer-
et, und formale Systeme gelten als Systeme ohne jeden Bezug zur Wirklichkeit.
Den meisten zeitgenössischen Autoren ist nicht bewußt, daß sie HEGEL
nachreden, der folgendermaßen urteilt:

»... die Zahlen sind ein begriffloser Stoff, die Rechenoperation ist ein äußerliches Zusam-
menfassen oder Trennen, ein mechanisches Verfahren, wie denn Rechenmaschinen erfunden
worden sind, welche diese Operationen vollbringen; das härteste und grellste dagegen ist,
 wenn die Formbestimmungen des Schlosses, welche Begriffe sind, als ein begriffloser Stoff
behandelt werden.«

44 S. hierzu HEINEKAMP, Ars characteristica, p. 446-449.
45 Z.B. KLUGE, Freges, Leibniz and the Notion of an Ideal Language, p. 141; SWANSON, On the
calculus ratiocinatory, passim; LUTHER, Sprachphilosophie, p. 249 usw.; ähnlich HEGEL (s.u.);
46 Z.B. COHEN, On the Project, p. 50; HEINEKAMP, Ars characteristica, p. 450
47 AVI.3 170 = GP VII 7; ähnlich VE 670 = GP VII 184.
48 Z.B. VE 917-918 = C 277-279 = X 107-110; VE 919-920 = C 279f; VE 143f = C 280; VE 921-
922; VE 320f = C 281f = X 107; VE 923; VE 923; VE 924 = C 283; VE 353-376 = C 288-290 = X
104-106, VE 1057-1061 = C432-435 = X 100-104.
49 Z.B. DUTZ, LEIBNIZ Auffassung der Characteristica universalis, p. 10f; p 25; s. hierzu auch:
PATZIG, Leibniz, Frege and the sogenannte ‚lingua characteristica universalis‘. Richtig erkannt
wurden die Zusammenhänge von RISSE, Characteristica universalis, p. 107.
50 HEGEL, Wissenschaft der Logik: Die Lehre vom Begriff, p. 127f; ähnlich p. 128.
HEGEL und seine Nachfolger argumentieren tautologisch: ein mechanisches Verfahren lasse keine vernünftigen Schlüsse zu, weil mechanisch etwas Nichtvernunftgemäßes ist. Doch bei Darstellungstreue, wenn „Syntax gleich Semantik ist“, kann man mit den Zeichen "formal", d.h. ohne auf ihre Bedeutung zu achten, operieren; der Inhalt bleibt dennoch stets präsent: Er ist im Zeichensystem enthalten. 'Formal' bedeutet dann nicht 'inhaltsleer', sondern nur 'auf Formen beruhend'. Der Schlüssel zum eigentlichen Sinn formaler Systeme liegt also nicht im Absehen von jeglichen Gedankeninhalten, sondern im Darstellen des Inhaltes unter Beachtung der Darstellungstreue, so daß es zulässig ist zu sagen: mechanisch, aber dennoch vernünftig.

Trennung von Form und Inhalt

Kennzeichnend für eine logisch orientierte Denkweise ist die Propagierung der Trennung von Form und Inhalt. So heißt es z.B.

»Erst werden die Zeichen und zulässigen Formeln des Systems, d.h. seine Syntax festgelegt, dann wird die Bedeutung der Formeln definiert.«

»Formale Systeme werden zunächst konstruiert und danach gedeutet.«

»Wissen ist relativ zu einer gegebenen Sprache definiert.«

51 WEIZSÄCKER, Die Einheit der Natur, p. 56.
52 KRAMER, Symbolische Maschinen, p. 123; ähnlich: ebd. p. 60.
53 BALZERT, Die Wissenschaft und ihre Methoden, p. 36.
Verletzung der Darstellungstreue aufgrund traditioneller Formalismen

So operiert HEGEL mit Begriffspaaren wie abstrakt/konkret, Zufall/Notwendigkeit, Sein/Nichtsein, Einheit/Vielfalt usw., die nach herkömmlichem Sprachgebrauch einen Gegensatz beschreiben, sich also gegenseitig ausschließen, z.B.

»Das reine Sein und das reine Nichts sind also dasselbe.«54 »Das Zufällige hat also darum keinen Grund, weil es Zufällig ist; und ebensowohl hat es einen Grund, darum weil es zufällig ist.«55 »... die Notwendigkeit hat sich noch nicht aus sich selbst zur Zufälligkeit be-stimmt.«56

54 HEGEL, Wissenschaft der Logik. Die Lehre vom Sein, p. 72.
55 HEGEL, Wissenschaft der Logik. Die Lehre vom Wesen, p. 179.
56 HEGEL, Wissenschaft der Logik. Die Lehre vom Wesen, p. 185.
59 ENGELS, Anti-Dühring, p. 131f.
Aus der von HEGEL geschaffenen Situation zweigen drei Wege ab; zwei davon sind Irrwege. Mit der ihr eigentümlichen Treffsicherheit hat sich die Philosophie für diese beiden entschieden. Bei dem einen ist die Dialektik zur Grundlage gemacht worden; er ist gekennzeichnet durch den verzweifelten Versuch, innerhalb des verfügbaren ideologischen Spielraums formale Logik und Dialektik in Einklang zu bringen. Der andere verwirft den dialektischen Ansatz und damit zugleich den unbestreitbaren Prozeßcharakter unserer Welt. Die Folge ist notwendig eine Abkehr von der Wirklichkeit und eine Hinwendung zu idealistischen und positivistischen Strömungen. Aus Sicht der Wissensdarstellung handelt es sich beim dialektischen Ansatz jedoch wiederum um eine Verletzung der Darstellungstreue: Es wird versucht, mit dem Rüstzeug der zweierwertigen Logik die Prozeßhaftigkeit der Vorgänge in Natur und Gesellschaft, also Zeitveränderlichkeit, zu beschreiben, wofür aber dieser Formalismus ungeeignet ist. Der dritte Weg bestünde also darin, nach einem sprachlichen Ausdruck für allgemeine Wechselwirkungsprozesse zu suchen; er wurde noch nicht realisiert: selbst in der Physik ist man bislang über die Beschreibung spezieller Wechselwirkungsprozesse nicht hinausgekommen.

Resümee

Die heute unter ‚ars characteristica’ zusammengefaßten Arbeiten von LEIBNIZ betreffen nur zu einem geringen Teil die symbolische Logik; der Hauptteil bezieht sich auf die formalsprachliche Darstellung von Wissen aus den verschiedensten Gebieten. Dies folgt aus den von ihm erkannten Darstellungsprinzipien und aus seinen zahlreichen fragmentarischen Darstellungsversuchen.

Durch seinen Plan, Schlußfolgern auf Zeichenoperationen zurückzuführen, nimmt LEIBNIZ theoretisch die Idee von wissensbasierten Systemen vorweg. Er liefert gewissermaßen die Ideen, für deren Verwirklichung erst heute die geeigneten Mittel zur Verfügung stehen. Er selbst mußte sich mit Federkiel und Papier beginnen, um so höher ist seine Leistung und seine Voraussicht in die Tragweite seines Ansatzes einzuschätzen. Es bedarf wenig Phantasie, sich vorzustellen, was er, mit einem leistungsfähigen Rechner ausgestattet, heutigentags zustande gebracht haben würde.

Darstellen ist eine gestalterische und somit kreative Tätigkeit, in deren Verlauf das darzustellende Wissen in eine systematische Ordnung gebracht und mit einem geeigneten Zeichensystem in Bezug gesetzt werden muß. Die Fragmente von LEIBNIZ zur Encyclopaedia, aber auch viele seiner Einzeluntersuchungen befassen sich mit dieser Aufgabe. Aus heutiger Sicht charakterisiert das nach ihm benannte Programm die Arbeit eines theoretischen Wissensforschers. Die Wissensdarstellung berührt daher auch grundlegende wissenschaftstheoretische Fragen, z.B. was eine Theorie ist und wie man sie aufstellt. Die zeitgenössische analyti-
sche Wissenschaftstheorie muß hierauf die Antwort schuldig bleiben, denn mit der logischen Analyse fertiger (meist physikalischer) Theorien beschäftigt, fehlen ihr hierzu die notwendigen sprachtheoretischen Mittel. Eine die Darstellungsthematik mit einbeziehende Wissenschaftstheorie müßte von Grund auf anders aufgebaut werden als die analytische, denn die Logik oder etwa die Mengentheorie nach BOURBAKI sind dann nur noch spezielle Darstellungsformalismen unter anderen, während sie jetzt die methodischen Richtlinien bestimmen.

ten ist das Sprachbewußtsein wenig entwickelt. Man kennt weder die durch die Verletzung der Darstellungstreu entstehenden Folgen noch ist man sich der Vorteile bewußt, die Sprache als Werkzeug bietet kann: das Potential, das sich hier darbietet, ist ebenfalls noch weitgehend unausgeschöpft geblieben.

Literatur

HEINEKAMP, ALBERT: "Ars characteristica und Natürliche Sprache bei Leibniz", *Tijdschrift voor Filosofie*, 34, No. 3 (1972), S. 446-488.

LEIBNIZ, G. W.:
A = Sämtliche Schriften und Briefe = Akademieausgabe 1923ff; zitiert nach Reihe, Band, Seite.
SCHNELLE, HELMUT: "From Leibniz to Artificial Intelligence", in: Liliana Albertazzi & Roberto Poli (Eds.): *Topics in Philosophy and Artificial Intelligence*, Bozen (Mitteleuropäisches Kulturinstitut) 1991, S. 61-76.